MOVR Price: $6.14 (+9.05%)
Gas: 0 GWei

Contract

0x3335733c454805df6a77f825f266e136FB4a3333

Overview

MOVR Balance

Moonriver Chain LogoMoonriver Chain LogoMoonriver Chain Logo0 MOVR

MOVR Value

$0.00
Transaction Hash
Method
Block
From
To
Start Via Rubic108011162025-03-20 7:19:0033 days ago1742455140IN
0x3335733c...6FB4a3333
0 MOVR0.001164462.8125
Start Via Rubic107589522025-03-17 7:09:0036 days ago1742195340IN
0x3335733c...6FB4a3333
4 MOVR0.003876383.4
Start Via Rubic105236052025-02-28 14:29:1253 days ago1740752952IN
0x3335733c...6FB4a3333
2.50754898 MOVR0.009554082.8125
Start Via Rubic105132202025-02-27 20:49:3654 days ago1740689376IN
0x3335733c...6FB4a3333
0.315 MOVR0.005910032.8125
Start Via Rubic105122292025-02-27 19:08:4854 days ago1740683328IN
0x3335733c...6FB4a3333
3 MOVR0.008837592.8125
Start Via Rubic105101192025-02-27 15:33:2454 days ago1740670404IN
0x3335733c...6FB4a3333
2 MOVR0.008837592.8125
Start Via Rubic105088042025-02-27 13:20:1254 days ago1740662412IN
0x3335733c...6FB4a3333
0.4 MOVR0.004731752.8125
Start Via Rubic104698702025-02-24 19:16:0657 days ago1740424566IN
0x3335733c...6FB4a3333
1.5 MOVR0.008837592.8125
Start Via Rubic103997562025-02-19 20:29:0062 days ago1739996940IN
0x3335733c...6FB4a3333
2.5 MOVR0.010245512.8125
Start Via Rubic103986112025-02-19 18:32:4262 days ago1739989962IN
0x3335733c...6FB4a3333
0 MOVR0.000483240.3125
Start Via Rubic103985682025-02-19 18:28:2462 days ago1739989704IN
0x3335733c...6FB4a3333
0.28 MOVR0.000606340.3125
Start Via Rubic103985472025-02-19 18:26:1262 days ago1739989572IN
0x3335733c...6FB4a3333
0 MOVR0.000398520.3125
Start Via Rubic103975032025-02-19 16:40:2462 days ago1739983224IN
0x3335733c...6FB4a3333
0 MOVR0.000380370.3125
Start Via Rubic103713712025-02-17 20:21:2464 days ago1739823684IN
0x3335733c...6FB4a3333
0.2 MOVR0.005953592.8125
Start Via Rubic103675292025-02-17 13:51:4264 days ago1739800302IN
0x3335733c...6FB4a3333
1 MOVR0.009540362.8125
Start Via Rubic103658202025-02-17 10:57:5464 days ago1739789874IN
0x3335733c...6FB4a3333
0.2 MOVR0.004731752.8125
Start Via Rubic103519232025-02-16 11:24:5465 days ago1739705094IN
0x3335733c...6FB4a3333
0.1 MOVR0.005953592.8125
Start Via Rubic103519122025-02-16 11:23:4265 days ago1739705022IN
0x3335733c...6FB4a3333
0.2 MOVR0.005953592.8125
Start Via Rubic103396362025-02-15 14:34:2466 days ago1739630064IN
0x3335733c...6FB4a3333
4 MOVR0.010536392.8125
Start Via Rubic103382312025-02-15 12:11:0666 days ago1739621466IN
0x3335733c...6FB4a3333
0.1 MOVR0.003945962.8125
Start Via Rubic103380912025-02-15 11:56:5466 days ago1739620614IN
0x3335733c...6FB4a3333
1 MOVR0.008294172.8125
Start Via Rubic103357022025-02-15 7:53:5466 days ago1739606034IN
0x3335733c...6FB4a3333
5 MOVR0.008837592.8125
Start Via Rubic103284462025-02-14 19:35:2467 days ago1739561724IN
0x3335733c...6FB4a3333
4 MOVR0.011252882.8125
Start Via Rubic103273642025-02-14 17:45:3667 days ago1739555136IN
0x3335733c...6FB4a3333
0.5 MOVR0.0077222.8125
Start Via Rubic103273052025-02-14 17:39:3067 days ago1739554770IN
0x3335733c...6FB4a3333
0.5 MOVR0.004731752.8125
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
107589522025-03-17 7:09:0036 days ago1742195340
0x3335733c...6FB4a3333
4 MOVR
105236052025-02-28 14:29:1253 days ago1740752952
0x3335733c...6FB4a3333
2.50754898 MOVR
105122292025-02-27 19:08:4854 days ago1740683328
0x3335733c...6FB4a3333
3 MOVR
103713712025-02-17 20:21:2464 days ago1739823684
0x3335733c...6FB4a3333
0.2 MOVR
103675292025-02-17 13:51:4264 days ago1739800302
0x3335733c...6FB4a3333
1 MOVR
103658202025-02-17 10:57:5464 days ago1739789874
0x3335733c...6FB4a3333
0.2 MOVR
103396362025-02-15 14:34:2466 days ago1739630064
0x3335733c...6FB4a3333
4 MOVR
103382312025-02-15 12:11:0666 days ago1739621466
0x3335733c...6FB4a3333
0.1 MOVR
103273642025-02-14 17:45:3667 days ago1739555136
0x3335733c...6FB4a3333
0.5 MOVR
103273052025-02-14 17:39:3067 days ago1739554770
0x3335733c...6FB4a3333
0.5 MOVR
101382462025-02-01 8:57:1880 days ago1738400238
0x3335733c...6FB4a3333
0.85 MOVR
95742322024-12-23 6:48:42120 days ago1734936522
0x3335733c...6FB4a3333
0.01 MOVR
91777942024-11-24 21:28:24149 days ago1732483704
0x3335733c...6FB4a3333
1.7 MOVR
71429002024-07-01 16:32:54295 days ago1719851574
0x3335733c...6FB4a3333
1.09057971 MOVR
66178542024-04-24 17:54:48363 days ago1713981288
0x3335733c...6FB4a3333
0.07153075 MOVR
63767892024-03-20 11:08:30398 days ago1710932910
0x3335733c...6FB4a3333
0.05208333 MOVR
63734802024-03-19 23:10:30399 days ago1710889830
0x3335733c...6FB4a3333
31.04215851 MOVR
63734762024-03-19 23:09:36399 days ago1710889776
0x3335733c...6FB4a3333
30.04215851 MOVR
63734712024-03-19 23:08:36399 days ago1710889716
0x3335733c...6FB4a3333
30.04215851 MOVR
63734652024-03-19 23:07:18399 days ago1710889638
0x3335733c...6FB4a3333
50.04215851 MOVR
63734492024-03-19 23:04:00399 days ago1710889440
0x3335733c...6FB4a3333
30.04215851 MOVR
63734462024-03-19 23:03:18399 days ago1710889398
0x3335733c...6FB4a3333
20.04215851 MOVR
63734412024-03-19 23:02:12399 days ago1710889332
0x3335733c...6FB4a3333
20.04215851 MOVR
63734332024-03-19 23:00:18399 days ago1710889218
0x3335733c...6FB4a3333
50.04215851 MOVR
63718212024-03-19 17:12:48399 days ago1710868368
0x3335733c...6FB4a3333
0.04215851 MOVR
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ERC20Proxy

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion
File 1 of 15 : ERC20Proxy.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { LibAsset } from "../Libraries/LibAsset.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { ZeroAddress, LengthMissmatch, NotInitialized } from "../Errors/GenericErrors.sol";

/// @title ERC20 Proxy
/// @notice Proxy contract for safely transferring ERC20 tokens for swaps/executions
contract ERC20Proxy is Ownable {
    /// Storage ///
    address public diamond;

    /// Events ///
    event DiamondSet(address diamond);

    /// Constructor
    constructor(address _owner, address _diamond) {
        transferOwnership(_owner);
        diamond = _diamond;
    }

    function setDiamond(address _diamond) external onlyOwner {
        if (_diamond == address(0)) revert ZeroAddress();
        diamond = _diamond;

        emit DiamondSet(_diamond);
    }

    /// @dev Transfers tokens from user to the diamond and calls it
    /// @param tokens Addresses of tokens that should be sent to the diamond
    /// @param amounts Corresponding amounts of tokens
    /// @param facetCallData Calldata that should be passed to the diamond
    /// Should contain any cross-chain related function
    function startViaRubic(
        address[] memory tokens,
        uint256[] memory amounts,
        bytes memory facetCallData
    ) external payable {
        if (diamond == address(0)) revert NotInitialized();

        uint256 tokensLength = tokens.length;
        if (tokensLength != amounts.length) revert LengthMissmatch();

        for (uint256 i = 0; i < tokensLength; ) {
            LibAsset.transferFromERC20(
                tokens[i],
                msg.sender,
                diamond,
                amounts[i]
            );

            unchecked {
                ++i;
            }
        }

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory res) = diamond.call{ value: msg.value }(
            facetCallData
        );
        if (!success) {
            string memory reason = LibUtil.getRevertMsg(res);
            revert(reason);
        }
    }
}

File 2 of 15 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 15 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 4 of 15 : draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 5 of 15 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 6 of 15 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 7 of 15 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 8 of 15 : GenericErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

error TokenAddressIsZero();
error TokenNotSupported();
error CannotBridgeToSameNetwork();
error ZeroPostSwapBalance();
error NoSwapDataProvided();
error NativeValueWithERC();
error ContractCallNotAllowed();
error NullAddrIsNotAValidSpender();
error NullAddrIsNotAnERC20Token();
error NoTransferToNullAddress();
error NativeAssetTransferFailed();
error InvalidBridgeConfigLength();
error InvalidAmount();
error InvalidContract();
error InvalidConfig();
error UnsupportedChainId(uint256 chainId);
error InvalidReceiver();
error InvalidDestinationChain();
error InvalidSendingToken();
error InvalidCaller();
error AlreadyInitialized();
error NotInitialized();
error OnlyContractOwner();
error CannotAuthoriseSelf();
error RecoveryAddressCannotBeZero();
error CannotDepositNativeToken();
error InvalidCallData();
error NativeAssetNotSupported();
error UnAuthorized();
error NoSwapFromZeroBalance();
error InvalidFallbackAddress();
error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
error InsufficientBalance(uint256 required, uint256 balance);
error ZeroAmount();
error ZeroAddress();
error InvalidFee();
error InformationMismatch();
error LengthMissmatch();
error NotAContract();
error NotEnoughBalance(uint256 requested, uint256 available);
error InsufficientMessageValue();
error ExternalCallFailed();
error ReentrancyError();

File 9 of 15 : IFeesFacet.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

interface IFeesFacet {
    struct IntegratorFeeInfo {
        bool isIntegrator; // flag for setting 0 fees for integrator      - 1 byte
        uint32 tokenFee; // total fee percent gathered from user          - 4 bytes
        uint32 RubicTokenShare; // token share of platform commission     - 4 bytes
        uint32 RubicFixedCryptoShare; // native share of fixed commission - 4 bytes
        uint128 fixedFeeAmount; // custom fixed fee amount                - 16 bytes
    }

    /**
     * @dev Initializes the FeesFacet with treasury address and max fee amount
     * No need to check initialized status because if max fee is 0 than there is no token fees
     * @param _feeTreasure Address to send fees to
     * @param _maxRubicPlatformFee Max value of Tubic token fees
     */
    function initialize(
        address _feeTreasure,
        uint256 _maxRubicPlatformFee,
        uint256 _maxFixedNativeFee
    ) external;

    /**
     * @dev Sets fee info associated with an integrator
     * @param _integrator Address of the integrator
     * @param _info Struct with fee info
     */
    function setIntegratorInfo(
        address _integrator,
        IntegratorFeeInfo memory _info
    ) external;

    /**
     * @dev Sets address of the treasure
     * @param _feeTreasure Address of the treasure
     */
    function setFeeTreasure(address _feeTreasure) external;

    /**
     * @dev Sets fixed crypto fee
     * @param _fixedNativeFee Fixed crypto fee
     */
    function setFixedNativeFee(uint256 _fixedNativeFee) external;

    /**
     * @dev Sets Rubic token fee
     * @notice Cannot be higher than limit set only by an admin
     * @param _platformFee Fixed crypto fee
     */
    function setRubicPlatformFee(uint256 _platformFee) external;

    /**
     * @dev Sets the limit of Rubic token fee
     * @param _maxFee The limit
     */
    function setMaxRubicPlatformFee(uint256 _maxFee) external;

    /// VIEW FUNCTIONS ///

    function calcTokenFees(
        uint256 _amount,
        address _integrator
    )
        external
        view
        returns (uint256 totalFee, uint256 RubicFee, uint256 integratorFee);

    function fixedNativeFee() external view returns (uint256 _fixedNativeFee);

    function RubicPlatformFee()
        external
        view
        returns (uint256 _RubicPlatformFee);

    function maxRubicPlatformFee()
        external
        view
        returns (uint256 _maxRubicPlatformFee);

    function maxFixedNativeFee()
        external
        view
        returns (uint256 _maxFixedNativeFee);

    function feeTreasure() external view returns (address feeTreasure);

    function integratorToFeeInfo(
        address _integrator
    ) external view returns (IFeesFacet.IntegratorFeeInfo memory _info);
}

File 10 of 15 : FullMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.17;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = (0 - denominator) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }
}

File 11 of 15 : LibAsset.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.17;
import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ERC20Proxy } from "../Periphery/ERC20Proxy.sol";
import { LibSwap } from "./LibSwap.sol";
import { LibFees } from "./LibFees.sol";

/// @title LibAsset
/// @notice This library contains helpers for dealing with onchain transfers
///         of assets, including accounting for the native asset `assetId`
///         conventions and any noncompliant ERC20 transfers
library LibAsset {
    uint256 private constant MAX_UINT = type(uint256).max;

    address internal constant NULL_ADDRESS = address(0);

    /// @dev All native assets use the empty address for their asset id
    ///      by convention

    address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)

    /// @notice Gets the balance of the inheriting contract for the given asset
    /// @param assetId The asset identifier to get the balance of
    /// @return Balance held by contracts using this library
    function getOwnBalance(address assetId) internal view returns (uint256) {
        return
            assetId == NATIVE_ASSETID
                ? address(this).balance
                : IERC20(assetId).balanceOf(address(this));
    }

    /// @notice Transfers ether from the inheriting contract to a given
    ///         recipient
    /// @param recipient Address to send ether to
    /// @param amount Amount to send to given recipient
    function transferNativeAsset(
        address payable recipient,
        uint256 amount
    ) internal {
        if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
        if (amount > address(this).balance)
            revert InsufficientBalance(amount, address(this).balance);
        // solhint-disable-next-line avoid-low-level-calls
        (bool success, ) = recipient.call{ value: amount }("");
        if (!success) revert NativeAssetTransferFailed();
    }

    /// @notice If the current allowance is insufficient, the allowance for a given spender
    /// is set to MAX_UINT.
    /// @param assetId Token address to transfer
    /// @param spender Address to give spend approval to
    /// @param amount Amount to approve for spending
    function maxApproveERC20(
        IERC20 assetId,
        address spender,
        uint256 amount
    ) internal {
        if (address(assetId) == NATIVE_ASSETID) return;
        if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
        uint256 allowance = assetId.allowance(address(this), spender);

        if (allowance < amount)
            SafeERC20.safeIncreaseAllowance(
                IERC20(assetId),
                spender,
                MAX_UINT - allowance
            );
    }

    /// @notice Transfers tokens from the inheriting contract to a given
    ///         recipient
    /// @param assetId Token address to transfer
    /// @param recipient Address to send token to
    /// @param amount Amount to send to given recipient
    function transferERC20(
        address assetId,
        address recipient,
        uint256 amount
    ) internal {
        if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
        uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
        if (amount > assetBalance)
            revert InsufficientBalance(amount, assetBalance);
        SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
    }

    /// @notice Transfers tokens from a sender to a given recipient
    /// @param assetId Token address to transfer
    /// @param from Address of sender/owner
    /// @param to Address of recipient/spender
    /// @param amount Amount to transfer from owner to spender
    function transferFromERC20(
        address assetId,
        address from,
        address to,
        uint256 amount
    ) internal {
        if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
        if (to == NULL_ADDRESS) revert NoTransferToNullAddress();

        IERC20 asset = IERC20(assetId);
        uint256 prevBalance = asset.balanceOf(to);
        SafeERC20.safeTransferFrom(asset, from, to, amount);
        if (asset.balanceOf(to) - prevBalance != amount)
            revert InvalidAmount();
    }

    /// @dev Deposits asset for bridging and accrues fixed and token fees
    /// @param assetId Address of asset to deposit
    /// @param amount Amount of asset to bridge
    /// @param extraNativeAmount Amount of native token to send to a bridge
    /// @param integrator Integrator for whom to count the fees
    /// @return amountWithoutFees Amount of tokens to bridge minus fees
    function depositAssetAndAccrueFees(
        address assetId,
        uint256 amount,
        uint256 extraNativeAmount,
        address integrator
    ) internal returns (uint256 amountWithoutFees) {
        uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
            integrator
        );
        // Check that msg value is at least greater than fixed native fee + extra fee sending to bridge
        if (msg.value < accruedFixedNativeFee + extraNativeAmount)
            revert InvalidAmount();

        amountWithoutFees = _depositAndAccrueTokenFee(
            assetId,
            amount,
            accruedFixedNativeFee,
            extraNativeAmount,
            integrator
        );
    }

    /// @dev Deposits assets for each swap that requires and accrues fixed and token fees
    /// @param swaps Array of swap datas
    /// @param integrator Integrator for whom to count the fees
    /// @return amountWithoutFees Array of swap datas with updated amounts
    function depositAssetsAndAccrueFees(
        LibSwap.SwapData[] memory swaps,
        address integrator
    ) internal returns (LibSwap.SwapData[] memory) {
        uint256 accruedFixedNativeFee = LibFees.accrueFixedNativeFee(
            integrator
        );
        if (msg.value < accruedFixedNativeFee) revert InvalidAmount();
        for (uint256 i = 0; i < swaps.length; ) {
            LibSwap.SwapData memory swap = swaps[i];
            if (swap.requiresDeposit) {
                swap.fromAmount = _depositAndAccrueTokenFee(
                    swap.sendingAssetId,
                    swap.fromAmount,
                    accruedFixedNativeFee,
                    0,
                    integrator
                );
            }
            swaps[i] = swap;
            unchecked {
                i++;
            }
        }

        return swaps;
    }

    function _depositAndAccrueTokenFee(
        address assetId,
        uint256 amount,
        uint256 accruedFixedNativeFee,
        uint256 extraNativeAmount,
        address integrator
    ) private returns (uint256 amountWithoutFees) {
        if (isNativeAsset(assetId)) {
            // Check that msg value greater than sending amount + fixed native fees + extra fees sending to bridge
            if (msg.value < amount + accruedFixedNativeFee + extraNativeAmount)
                revert InvalidAmount();
        } else {
            if (amount == 0) revert InvalidAmount();
            uint256 balance = IERC20(assetId).balanceOf(address(this));
            if (balance < amount) revert InsufficientBalance(amount, balance);
            //            getERC20proxy().transferFrom(
            //                assetId,
            //                msg.sender,
            //                address(this),
            //                amount
            //            );
        }

        amountWithoutFees = LibFees.accrueTokenFees(
            integrator,
            amount,
            assetId
        );
    }

    /// @notice Determines whether the given assetId is the native asset
    /// @param assetId The asset identifier to evaluate
    /// @return Boolean indicating if the asset is the native asset
    function isNativeAsset(address assetId) internal pure returns (bool) {
        return assetId == NATIVE_ASSETID;
    }

    /// @notice Wrapper function to transfer a given asset (native or erc20) to
    ///         some recipient. Should handle all non-compliant return value
    ///         tokens as well by using the SafeERC20 contract by open zeppelin.
    /// @param assetId Asset id for transfer (address(0) for native asset,
    ///                token address for erc20s)
    /// @param recipient Address to send asset to
    /// @param amount Amount to send to given recipient
    function transferAsset(
        address assetId,
        address payable recipient,
        uint256 amount
    ) internal {
        (assetId == NATIVE_ASSETID)
            ? transferNativeAsset(recipient, amount)
            : transferERC20(assetId, recipient, amount);
    }

    /// @dev Checks whether the given address is a contract and contains code
    function isContract(address _contractAddr) internal view returns (bool) {
        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            size := extcodesize(_contractAddr)
        }
        return size > 0;
    }
}

File 12 of 15 : LibBytes.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

library LibBytes {
    // solhint-disable no-inline-assembly

    // LibBytes specific errors
    error SliceOverflow();
    error SliceOutOfBounds();
    error AddressOutOfBounds();
    error UintOutOfBounds();

    // -------------------------

    function concat(
        bytes memory _preBytes,
        bytes memory _postBytes
    ) internal pure returns (bytes memory) {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(
                0x40,
                and(
                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                    not(31) // Round down to the nearest 32 bytes.
                )
            )
        }

        return tempBytes;
    }

    function concatStorage(
        bytes storage _preBytes,
        bytes memory _postBytes
    ) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(
                and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                2
            )
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(
                    sc,
                    add(
                        and(
                            fslot,
                            0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                        ),
                        and(mload(mc), mask)
                    )
                )

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(
        bytes memory _bytes,
        uint256 _start,
        uint256 _length
    ) internal pure returns (bytes memory) {
        if (_length + 31 < _length) revert SliceOverflow();
        if (_bytes.length < _start + _length) revert SliceOutOfBounds();

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(
                    add(tempBytes, lengthmod),
                    mul(0x20, iszero(lengthmod))
                )
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(
                        add(
                            add(_bytes, lengthmod),
                            mul(0x20, iszero(lengthmod))
                        ),
                        _start
                    )
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (address) {
        if (_bytes.length < _start + 20) {
            revert AddressOutOfBounds();
        }
        address tempAddress;

        assembly {
            tempAddress := div(
                mload(add(add(_bytes, 0x20), _start)),
                0x1000000000000000000000000
            )
        }

        return tempAddress;
    }

    function toUint8(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (uint8) {
        if (_bytes.length < _start + 1) {
            revert UintOutOfBounds();
        }
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (uint16) {
        if (_bytes.length < _start + 2) {
            revert UintOutOfBounds();
        }
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (uint32) {
        if (_bytes.length < _start + 4) {
            revert UintOutOfBounds();
        }
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (uint64) {
        if (_bytes.length < _start + 8) {
            revert UintOutOfBounds();
        }
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (uint96) {
        if (_bytes.length < _start + 12) {
            revert UintOutOfBounds();
        }
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (uint128) {
        if (_bytes.length < _start + 16) {
            revert UintOutOfBounds();
        }
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (uint256) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(
        bytes memory _bytes,
        uint256 _start
    ) internal pure returns (bytes32) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(
        bytes memory _preBytes,
        bytes memory _postBytes
    ) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(
        bytes storage _preBytes,
        bytes memory _postBytes
    ) internal view returns (bool) {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(
                and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
                2
            )
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        // solhint-disable-next-line no-empty-blocks
                        for {

                        } eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function getFirst4Bytes(
        bytes memory data
    ) internal pure returns (bytes4 outBytes4) {
        if (data.length == 0) {
            return 0x0;
        }

        assembly {
            outBytes4 := mload(add(data, 32))
        }
    }
}

File 13 of 15 : LibFees.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import { IFeesFacet } from "../Interfaces/IFeesFacet.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { FullMath } from "../Libraries/FullMath.sol";
import { LibAsset } from "../Libraries/LibAsset.sol";

/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibFees {
    bytes32 internal constant FFES_STORAGE_POSITION =
        keccak256("rubic.library.fees.v2");
    // Denominator for setting fees
    uint256 internal constant DENOMINATOR = 1e6;

    // ----------------

    event FixedNativeFee(
        uint256 RubicPart,
        uint256 integratorPart,
        address indexed integrator
    );
    event FixedNativeFeeCollected(uint256 amount, address collector);
    event TokenFee(
        uint256 RubicPart,
        uint256 integratorPart,
        address indexed integrator,
        address token
    );
    event IntegratorTokenFeeCollected(
        uint256 amount,
        address indexed integrator,
        address token
    );

    struct FeesStorage {
        mapping(address => IFeesFacet.IntegratorFeeInfo) integratorToFeeInfo;
        uint256 maxRubicPlatformFee; // sets while initialize
        uint256 maxFixedNativeFee; // sets while initialize & cannot be changed
        uint256 RubicPlatformFee;
        // Rubic fixed fee for swap
        uint256 fixedNativeFee;
        address feeTreasure;
        bool initialized;
    }

    function feesStorage() internal pure returns (FeesStorage storage fs) {
        bytes32 position = FFES_STORAGE_POSITION;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            fs.slot := position
        }
    }

    /**
     * @dev Calculates and accrues fixed crypto fee
     * @param _integrator Integrator's address if there is one
     * @return The amount of fixedNativeFee
     */
    function accrueFixedNativeFee(
        address _integrator
    ) internal returns (uint256) {
        uint256 _fixedNativeFee;
        uint256 _RubicPart;

        FeesStorage storage fs = feesStorage();
        IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
            _integrator
        ];

        if (_info.isIntegrator) {
            _fixedNativeFee = uint256(_info.fixedFeeAmount);

            if (_fixedNativeFee > 0) {
                _RubicPart =
                    (_fixedNativeFee * _info.RubicFixedCryptoShare) /
                    DENOMINATOR;

                if (_fixedNativeFee - _RubicPart > 0)
                    LibAsset.transferNativeAsset(
                        payable(_integrator),
                        _fixedNativeFee - _RubicPart
                    );
            }
        } else {
            _fixedNativeFee = fs.fixedNativeFee;
            _RubicPart = _fixedNativeFee;
        }

        if (_RubicPart > 0)
            LibAsset.transferNativeAsset(payable(fs.feeTreasure), _RubicPart);

        emit FixedNativeFee(
            _RubicPart,
            _fixedNativeFee - _RubicPart,
            _integrator
        );

        return _fixedNativeFee;
    }

    /**
     * @dev Calculates token fees and accrues them
     * @param _integrator Integrator's address if there is one
     * @param _amountWithFee Total amount passed by the user
     * @param _token The token in which the fees are collected
     * @return Amount of tokens without fee
     */
    function accrueTokenFees(
        address _integrator,
        uint256 _amountWithFee,
        address _token
    ) internal returns (uint256) {
        FeesStorage storage fs = feesStorage();
        IFeesFacet.IntegratorFeeInfo memory _info = fs.integratorToFeeInfo[
            _integrator
        ];

        (uint256 _totalFees, uint256 _RubicFee) = _calculateFee(
            fs,
            _amountWithFee,
            _info
        );

        if (_integrator != address(0)) {
            if (_totalFees - _RubicFee > 0)
                LibAsset.transferAsset(
                    _token,
                    payable(_integrator),
                    _totalFees - _RubicFee
                );
        }
        if (_RubicFee > 0)
            LibAsset.transferAsset(_token, payable(fs.feeTreasure), _RubicFee);

        emit TokenFee(_RubicFee, _totalFees - _RubicFee, _integrator, _token);

        return _amountWithFee - _totalFees;
    }

    /// PRIVATE ///

    /**
     * @dev Calculates fee amount for integrator and rubic, used in architecture
     * @param _amountWithFee the users initial amount
     * @param _info the struct with data about integrator
     * @return _totalFee the amount of Rubic + integrator fee
     * @return _RubicFee the amount of Rubic fee only
     */
    function _calculateFeeWithIntegrator(
        uint256 _amountWithFee,
        IFeesFacet.IntegratorFeeInfo memory _info
    ) private pure returns (uint256 _totalFee, uint256 _RubicFee) {
        if (_info.tokenFee > 0) {
            _totalFee = FullMath.mulDiv(
                _amountWithFee,
                _info.tokenFee,
                DENOMINATOR
            );

            _RubicFee = FullMath.mulDiv(
                _totalFee,
                _info.RubicTokenShare,
                DENOMINATOR
            );
        }
    }

    function _calculateFee(
        FeesStorage storage _fs,
        uint256 _amountWithFee,
        IFeesFacet.IntegratorFeeInfo memory _info
    ) internal view returns (uint256 _totalFee, uint256 _RubicFee) {
        if (_info.isIntegrator) {
            (_totalFee, _RubicFee) = _calculateFeeWithIntegrator(
                _amountWithFee,
                _info
            );
        } else {
            _totalFee = FullMath.mulDiv(
                _amountWithFee,
                _fs.RubicPlatformFee,
                DENOMINATOR
            );

            _RubicFee = _totalFee;
        }
    }
}

File 14 of 15 : LibSwap.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import { LibAsset } from "./LibAsset.sol";
import { LibUtil } from "./LibUtil.sol";
import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance, UnAuthorized } from "../Errors/GenericErrors.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

library LibSwap {
    struct SwapData {
        address callTo;
        address approveTo;
        address sendingAssetId;
        address receivingAssetId;
        uint256 fromAmount;
        bytes callData;
        bool requiresDeposit;
    }

    event AssetSwapped(
        bytes32 transactionId,
        address dex,
        address fromAssetId,
        address toAssetId,
        uint256 fromAmount,
        uint256 toAmount,
        uint256 timestamp
    );

    function swap(bytes32 transactionId, SwapData memory _swap) internal {
        if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
        uint256 fromAmount = _swap.fromAmount;
        if (fromAmount == 0) revert NoSwapFromZeroBalance();
        uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
            ? _swap.fromAmount
            : 0;
        uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
            _swap.sendingAssetId
        );
        uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
            _swap.receivingAssetId
        );

        if (nativeValue == 0) {
            LibAsset.maxApproveERC20(
                IERC20(_swap.sendingAssetId),
                _swap.approveTo,
                _swap.fromAmount
            );
        }

        if (initialSendingAssetBalance < _swap.fromAmount) {
            revert InsufficientBalance(
                _swap.fromAmount,
                initialSendingAssetBalance
            );
        }

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory res) = _swap.callTo.call{
            value: nativeValue
        }(_swap.callData);
        if (!success) {
            string memory reason = LibUtil.getRevertMsg(res);
            revert(reason);
        }

        uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);

        emit AssetSwapped(
            transactionId,
            _swap.callTo,
            _swap.sendingAssetId,
            _swap.receivingAssetId,
            _swap.fromAmount,
            newBalance > initialReceivingAssetBalance
                ? newBalance - initialReceivingAssetBalance
                : newBalance,
            block.timestamp
        );
    }
}

File 15 of 15 : LibUtil.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import "./LibBytes.sol";

library LibUtil {
    using LibBytes for bytes;

    function getRevertMsg(
        bytes memory _res
    ) internal pure returns (string memory) {
        if (_res.length < 68) return string(_res);
        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
        return abi.decode(revertData, (string)); // All that remains is the revert string
    }

    /// @notice Determines whether the given address is the zero address
    /// @param addr The address to verify
    /// @return Boolean indicating if the address is the zero address
    function isZeroAddress(address addr) internal pure returns (bool) {
        return addr == address(0);
    }
}

Settings
{
  "remappings": [
    "@axelar-network/=node_modules/@axelar-network/",
    "@connext/=node_modules/@connext/",
    "@eth-optimism/=node_modules/@eth-optimism/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@uniswap/=node_modules/@uniswap/",
    "celer-network/=lib/sgn-v2-contracts/",
    "create3-factory/=lib/create3-factory/src/",
    "ds-test/=lib/ds-test/src/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat-deploy/=node_modules/hardhat-deploy/",
    "hardhat/=node_modules/hardhat/",
    "rubic/=src/",
    "sgn-v2-contracts/=lib/sgn-v2-contracts/contracts/",
    "solmate/=lib/solmate/src/",
    "test/=test/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_diamond","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"LengthMissmatch","type":"error"},{"inputs":[],"name":"NoTransferToNullAddress","type":"error"},{"inputs":[],"name":"NotInitialized","type":"error"},{"inputs":[],"name":"NullAddrIsNotAnERC20Token","type":"error"},{"inputs":[],"name":"SliceOutOfBounds","type":"error"},{"inputs":[],"name":"SliceOverflow","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"diamond","type":"address"}],"name":"DiamondSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"diamond","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_diamond","type":"address"}],"name":"setDiamond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"facetCallData","type":"bytes"}],"name":"startViaRubic","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60806040523480156200001157600080fd5b50604051620013b4380380620013b48339810160408190526200003491620001bf565b6200003f3362000071565b6200004a82620000c1565b600180546001600160a01b0319166001600160a01b039290921691909117905550620001f7565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b620000cb62000144565b6001600160a01b038116620001365760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084015b60405180910390fd5b620001418162000071565b50565b6000546001600160a01b03163314620001a05760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016200012d565b565b80516001600160a01b0381168114620001ba57600080fd5b919050565b60008060408385031215620001d357600080fd5b620001de83620001a2565b9150620001ee60208401620001a2565b90509250929050565b6111ad80620002076000396000f3fe6080604052600436106100655760003560e01c8063e1fcde8e11610043578063e1fcde8e146100f1578063f0b7db4e14610104578063f2fde38b1461013157600080fd5b8063715018a61461006a57806376ed535a146100815780638da5cb5b146100a1575b600080fd5b34801561007657600080fd5b5061007f610151565b005b34801561008d57600080fd5b5061007f61009c366004610d07565b610165565b3480156100ad57600080fd5b5060005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200160405180910390f35b61007f6100ff366004610ec6565b610233565b34801561011057600080fd5b506001546100c89073ffffffffffffffffffffffffffffffffffffffff1681565b34801561013d57600080fd5b5061007f61014c366004610d07565b610401565b6101596104b8565b6101636000610539565b565b61016d6104b8565b73ffffffffffffffffffffffffffffffffffffffff81166101ba576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527fc2c7b6f89581aaed297b266b8b7687a221c3bbb4fadafb49df5e5d0a1fdea4ab9060200160405180910390a150565b60015473ffffffffffffffffffffffffffffffffffffffff16610282576040517f87138d5c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8251825181146102be576040517fd4e105db00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60005b81811015610331576103298582815181106102de576102de610faa565b602002602001015133600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1687858151811061031c5761031c610faa565b60200260200101516105ae565b6001016102c1565b50600154604051600091829173ffffffffffffffffffffffffffffffffffffffff909116903490610363908790610ffd565b60006040518083038185875af1925050503d80600081146103a0576040519150601f19603f3d011682016040523d82523d6000602084013e6103a5565b606091505b5091509150816103f95760006103ba826107c0565b9050806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b60405180910390fd5b505050505050565b6104096104b8565b73ffffffffffffffffffffffffffffffffffffffff81166104ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016103f0565b6104b581610539565b50565b60005473ffffffffffffffffffffffffffffffffffffffff163314610163576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103f0565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b73ffffffffffffffffffffffffffffffffffffffff84166105fb576040517fd1bebf0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff8216610648576040517f21f7434500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff838116600483015285916000918316906370a0823190602401602060405180830381865afa1580156106b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106dd919061106a565b90506106eb82868686610809565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152849183918516906370a0823190602401602060405180830381865afa15801561075b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061077f919061106a565b61078991906110b2565b146103f9576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60606044825110156107d0575090565b60006107ec60048085516107e491906110b2565b8591906108a4565b90508080602001905181019061080291906110cb565b9392505050565b6040805173ffffffffffffffffffffffffffffffffffffffff85811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd0000000000000000000000000000000000000000000000000000000017905261089e9085906109be565b50505050565b6060816108b281601f611142565b10156108ea576040517f47aaf07a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108f48284611142565b8451101561092e576040517f3b99b53d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60608215801561094d57604051915060008252602082016040526109b5565b6040519150601f8416801560200281840101858101878315602002848b0101015b8183101561098657805183526020928301920161096e565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b6000610a20826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff16610acf9092919063ffffffff16565b805190915015610aca5780806020019051810190610a3e9190611155565b610aca576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f7420737563636565640000000000000000000000000000000000000000000060648201526084016103f0565b505050565b6060610ade8484600085610ae6565b949350505050565b606082471015610b78576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c000000000000000000000000000000000000000000000000000060648201526084016103f0565b6000808673ffffffffffffffffffffffffffffffffffffffff168587604051610ba19190610ffd565b60006040518083038185875af1925050503d8060008114610bde576040519150601f19603f3d011682016040523d82523d6000602084013e610be3565b606091505b5091509150610bf487838387610bff565b979650505050505050565b60608315610c95578251600003610c8e5773ffffffffffffffffffffffffffffffffffffffff85163b610c8e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103f0565b5081610ade565b610ade8383815115610caa5781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d0257600080fd5b919050565b600060208284031215610d1957600080fd5b61080282610cde565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715610d9857610d98610d22565b604052919050565b600067ffffffffffffffff821115610dba57610dba610d22565b5060051b60200190565b600082601f830112610dd557600080fd5b81356020610dea610de583610da0565b610d51565b82815260059290921b84018101918181019086841115610e0957600080fd5b8286015b84811015610e245780358352918301918301610e0d565b509695505050505050565b600067ffffffffffffffff821115610e4957610e49610d22565b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b600082601f830112610e8657600080fd5b8135610e94610de582610e2f565b818152846020838601011115610ea957600080fd5b816020850160208301376000918101602001919091529392505050565b600080600060608486031215610edb57600080fd5b833567ffffffffffffffff80821115610ef357600080fd5b818601915086601f830112610f0757600080fd5b81356020610f17610de583610da0565b82815260059290921b8401810191818101908a841115610f3657600080fd5b948201945b83861015610f5b57610f4c86610cde565b82529482019490820190610f3b565b97505087013592505080821115610f7157600080fd5b610f7d87838801610dc4565b93506040860135915080821115610f9357600080fd5b50610fa086828701610e75565b9150509250925092565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60005b83811015610ff4578181015183820152602001610fdc565b50506000910152565b6000825161100f818460208701610fd9565b9190910192915050565b6020815260008251806020840152611038816040850160208701610fd9565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b60006020828403121561107c57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b818103818111156110c5576110c5611083565b92915050565b6000602082840312156110dd57600080fd5b815167ffffffffffffffff8111156110f457600080fd5b8201601f8101841361110557600080fd5b8051611113610de582610e2f565b81815285602083850101111561112857600080fd5b611139826020830160208601610fd9565b95945050505050565b808201808211156110c5576110c5611083565b60006020828403121561116757600080fd5b8151801515811461080257600080fdfea2646970667358221220293639de8e087a2ea23e51c02795f8d7bdecb2fac191896db522165ae9e80f2c64736f6c6343000811003300000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8e0000000000000000000000006aa981bff95edfea36bdae98c26b274ffcafe8d3

Deployed Bytecode

0x6080604052600436106100655760003560e01c8063e1fcde8e11610043578063e1fcde8e146100f1578063f0b7db4e14610104578063f2fde38b1461013157600080fd5b8063715018a61461006a57806376ed535a146100815780638da5cb5b146100a1575b600080fd5b34801561007657600080fd5b5061007f610151565b005b34801561008d57600080fd5b5061007f61009c366004610d07565b610165565b3480156100ad57600080fd5b5060005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200160405180910390f35b61007f6100ff366004610ec6565b610233565b34801561011057600080fd5b506001546100c89073ffffffffffffffffffffffffffffffffffffffff1681565b34801561013d57600080fd5b5061007f61014c366004610d07565b610401565b6101596104b8565b6101636000610539565b565b61016d6104b8565b73ffffffffffffffffffffffffffffffffffffffff81166101ba576040517fd92e233d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527fc2c7b6f89581aaed297b266b8b7687a221c3bbb4fadafb49df5e5d0a1fdea4ab9060200160405180910390a150565b60015473ffffffffffffffffffffffffffffffffffffffff16610282576040517f87138d5c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8251825181146102be576040517fd4e105db00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60005b81811015610331576103298582815181106102de576102de610faa565b602002602001015133600160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1687858151811061031c5761031c610faa565b60200260200101516105ae565b6001016102c1565b50600154604051600091829173ffffffffffffffffffffffffffffffffffffffff909116903490610363908790610ffd565b60006040518083038185875af1925050503d80600081146103a0576040519150601f19603f3d011682016040523d82523d6000602084013e6103a5565b606091505b5091509150816103f95760006103ba826107c0565b9050806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b60405180910390fd5b505050505050565b6104096104b8565b73ffffffffffffffffffffffffffffffffffffffff81166104ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016103f0565b6104b581610539565b50565b60005473ffffffffffffffffffffffffffffffffffffffff163314610163576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016103f0565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b73ffffffffffffffffffffffffffffffffffffffff84166105fb576040517fd1bebf0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff8216610648576040517f21f7434500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff838116600483015285916000918316906370a0823190602401602060405180830381865afa1580156106b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106dd919061106a565b90506106eb82868686610809565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152849183918516906370a0823190602401602060405180830381865afa15801561075b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061077f919061106a565b61078991906110b2565b146103f9576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60606044825110156107d0575090565b60006107ec60048085516107e491906110b2565b8591906108a4565b90508080602001905181019061080291906110cb565b9392505050565b6040805173ffffffffffffffffffffffffffffffffffffffff85811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd0000000000000000000000000000000000000000000000000000000017905261089e9085906109be565b50505050565b6060816108b281601f611142565b10156108ea576040517f47aaf07a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108f48284611142565b8451101561092e576040517f3b99b53d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60608215801561094d57604051915060008252602082016040526109b5565b6040519150601f8416801560200281840101858101878315602002848b0101015b8183101561098657805183526020928301920161096e565b5050858452601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016604052505b50949350505050565b6000610a20826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c65648152508573ffffffffffffffffffffffffffffffffffffffff16610acf9092919063ffffffff16565b805190915015610aca5780806020019051810190610a3e9190611155565b610aca576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f7420737563636565640000000000000000000000000000000000000000000060648201526084016103f0565b505050565b6060610ade8484600085610ae6565b949350505050565b606082471015610b78576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f60448201527f722063616c6c000000000000000000000000000000000000000000000000000060648201526084016103f0565b6000808673ffffffffffffffffffffffffffffffffffffffff168587604051610ba19190610ffd565b60006040518083038185875af1925050503d8060008114610bde576040519150601f19603f3d011682016040523d82523d6000602084013e610be3565b606091505b5091509150610bf487838387610bff565b979650505050505050565b60608315610c95578251600003610c8e5773ffffffffffffffffffffffffffffffffffffffff85163b610c8e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103f0565b5081610ade565b610ade8383815115610caa5781518083602001fd5b806040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103f09190611019565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d0257600080fd5b919050565b600060208284031215610d1957600080fd5b61080282610cde565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715610d9857610d98610d22565b604052919050565b600067ffffffffffffffff821115610dba57610dba610d22565b5060051b60200190565b600082601f830112610dd557600080fd5b81356020610dea610de583610da0565b610d51565b82815260059290921b84018101918181019086841115610e0957600080fd5b8286015b84811015610e245780358352918301918301610e0d565b509695505050505050565b600067ffffffffffffffff821115610e4957610e49610d22565b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b600082601f830112610e8657600080fd5b8135610e94610de582610e2f565b818152846020838601011115610ea957600080fd5b816020850160208301376000918101602001919091529392505050565b600080600060608486031215610edb57600080fd5b833567ffffffffffffffff80821115610ef357600080fd5b818601915086601f830112610f0757600080fd5b81356020610f17610de583610da0565b82815260059290921b8401810191818101908a841115610f3657600080fd5b948201945b83861015610f5b57610f4c86610cde565b82529482019490820190610f3b565b97505087013592505080821115610f7157600080fd5b610f7d87838801610dc4565b93506040860135915080821115610f9357600080fd5b50610fa086828701610e75565b9150509250925092565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60005b83811015610ff4578181015183820152602001610fdc565b50506000910152565b6000825161100f818460208701610fd9565b9190910192915050565b6020815260008251806020840152611038816040850160208701610fd9565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b60006020828403121561107c57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b818103818111156110c5576110c5611083565b92915050565b6000602082840312156110dd57600080fd5b815167ffffffffffffffff8111156110f457600080fd5b8201601f8101841361110557600080fd5b8051611113610de582610e2f565b81815285602083850101111561112857600080fd5b611139826020830160208601610fd9565b95945050505050565b808201808211156110c5576110c5611083565b60006020828403121561116757600080fd5b8151801515811461080257600080fdfea2646970667358221220293639de8e087a2ea23e51c02795f8d7bdecb2fac191896db522165ae9e80f2c64736f6c63430008110033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8e0000000000000000000000006aa981bff95edfea36bdae98c26b274ffcafe8d3

-----Decoded View---------------
Arg [0] : _owner (address): 0x00009cc27c811a3e0FdD2Fd737afCc721B67eE8e
Arg [1] : _diamond (address): 0x6AA981bFF95eDfea36Bdae98C26B274FfcafE8d3

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000000009cc27c811a3e0fdd2fd737afcc721b67ee8e
Arg [1] : 0000000000000000000000006aa981bff95edfea36bdae98c26b274ffcafe8d3


Block Transaction Gas Used Reward
view all blocks collator

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.