Contract Source Code:
// SPDX-License-Identifier: GPL-3.0
pragma solidity =0.5.16;
import './libraries/Math.sol';
import './libraries/UQ112x112.sol';
//import './interfaces/IERC20.sol';
import './interfaces/IZirconPair.sol';
import '@uniswap/v2-core/contracts/interfaces/IUniswapV2Callee.sol';
import './libraries/SafeMath.sol';
import "./ZirconERC20.sol";
import "./interfaces/IZirconFactory.sol";
import '@uniswap/v2-core/contracts/interfaces/IUniswapV2ERC20.sol';
//import "./libraries/ZirconLibrary.sol";
import "./energy/interfaces/IZirconEnergyRevenue.sol";
contract ZirconPair is IZirconPair, ZirconERC20 { //Name change does not affect ABI
using SafeMath for uint;
using UQ112x112 for uint224;
uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
address public factory;
address public token0;
address public token1;
address public energyRevenueAddress;
uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // us es single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'UniswapV2: LOCKED');
unlocked = 0;
_;
unlocked = 1;
}
function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
function _safeTransfer(address token, address to, uint value) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
constructor() public {
factory = msg.sender;
}
function tryLock() external lock {}
// called once by the factory at time of deployment
function initialize(address _token0, address _token1, address _energy) external {
require(msg.sender == factory, 'ZirconPair: FORBIDDEN'); // sufficient check
token0 = _token0;
token1 = _token1;
energyRevenueAddress = _energy;
}
// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1,
uint112 _reserve0, uint112 _reserve1) private {
require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
//Wrapper around mintFee primarily aimed to be called by Pylon
//Access control is unnecessary, if anyone calls it they just waste gas compounding fees for us
//The wrapper is necessary to make sure the reserves it passes to mintFee are actual
function publicMintFee() external lock {
(uint112 _reserve0, uint112 _reserve1,) = getReserves();
_mintFee(_reserve0, _reserve1);
kLast = uint(reserve0).mul(reserve1); //Reserves don't change from mintFee
}
// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private {
uint _kLast = kLast; // gas savings
if (_kLast != 0) {
uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
uint rootKLast = Math.sqrt(_kLast);
if (rootK > rootKLast) {
uint dynamicRatio = IZirconFactory(factory).dynamicRatio();
uint numerator = (rootK.sub(rootKLast)).mul(1e18);
uint denominator = rootK.mul(dynamicRatio).add(rootKLast);
uint liquidityPercentage = numerator / denominator;
if (liquidityPercentage > 0) {
// console.log("C ore: liqPercentage", liquidityPercentage);
_mint(energyRevenueAddress, liquidityPercentage.mul(totalSupply)/1e18);
// _mint(energyRevenueAddress, liquidityPercentage.mul(totalSupply)/1e18);
uint totalPercentage = ((rootK.sub(rootKLast)).mul(1e18))/rootKLast;
IZirconEnergyRevenue(energyRevenueAddress).calculate(totalPercentage.sub(liquidityPercentage));
}
}
}
}
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IUniswapV2ERC20(token0).balanceOf(address(this));
uint balance1 = IUniswapV2ERC20(token1).balanceOf(address(this));
uint amount0 = balance0.sub(_reserve0);
uint amount1 = balance1.sub(_reserve1);
_mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
// this low-level function should be called from a contract which performs important safety checks
// TODO: will be better if we pass the output amount
function mintOneSide(address to, bool isReserve0) external lock returns (uint liquidity, uint amount0, uint amount1) {
require(totalSupply > 0, 'UniswapV2: Use mint to start pair');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IUniswapV2ERC20(token0).balanceOf(address(this));
uint balance1 = IUniswapV2ERC20(token1).balanceOf(address(this));
amount0 = balance0.sub(_reserve0);
amount1 = balance1.sub(_reserve1);
uint _liquidityFee = IZirconFactory(factory).liquidityFee();
uint k;
//We use growth in sqrt(k) to calculate amount of pool tokens to mint. This implicitly takes care of slippage.
//Fee is slightly more than half total amount to account for residue you'd have if you swapped then minted normally
if (isReserve0){
require(amount0 > 1, "ZP: Insufficient Amount");
k = Math.sqrt(uint(reserve0 + (amount0.mul(10000-(_liquidityFee/2 + 1))/10000)).mul(balance1));
}else{
require(amount1 > 1, "ZP: Insufficient Amount");
k = Math.sqrt(balance0.mul(uint(reserve1 + (amount1.mul(10000-(_liquidityFee/2 + 1))/10000))));
}
uint kBefore = Math.sqrt(uint(reserve0).mul(reserve1));
uint numerator = (k.sub(kBefore)).mul(totalSupply);
uint denominator = kBefore;
liquidity = numerator / denominator;
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
_mintFee(_reserve0, _reserve1);
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut, uint fee) internal pure returns (uint amountOut) {
require(amountIn > 0, 'UV2: IIA');
require(reserveIn > 0 && reserveOut > 0, 'UV2: IL');
uint amountInWithFee = amountIn.mul(10000-fee);
uint numerator = amountInWithFee.mul(reserveOut);
uint denominator = reserveIn.mul(10000).add(amountInWithFee);
amountOut = numerator / denominator;
}
// this low-level function should be called from a contract which performs important safety checks
// TODO: Test this function
// TODO: maybe allow burning both sides to one
function burnOneSide(address to, bool isReserve0) external lock returns (uint amount) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint amount0;
uint amount1;
uint balance0 = IUniswapV2ERC20(_token0).balanceOf(address(this));
uint balance1 = IUniswapV2ERC20(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)];
uint _liquidityFee = IZirconFactory(factory).liquidityFee();
_mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
if (isReserve0) {
amount0 += getAmountOut(amount1, _reserve1 - amount1, _reserve0 - amount0, _liquidityFee);
amount = amount0;
require(amount < balance0, "UniswapV2: EXTENSION_NOT_ENOUGH_LIQUIDITY");
}else{
amount1 += getAmountOut(amount0, _reserve0 - amount0, _reserve1 - amount1, _liquidityFee);
amount = amount1;
require(amount < balance1, "UniswapV2: EXTENSION_NOT_ENOUGH_LIQUIDITY");
}
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
if (isReserve0) {
_safeTransfer(_token0, to, amount);
}else{
_safeTransfer(_token1, to, amount);
}
balance0 = IUniswapV2ERC20(_token0).balanceOf(address(this));
balance1 = IUniswapV2ERC20(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint balance0 = IUniswapV2ERC20(_token0).balanceOf(address(this));
uint balance1 = IUniswapV2ERC20(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)];
_mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IUniswapV2ERC20(_token0).balanceOf(address(this));
balance1 = IUniswapV2ERC20(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
uint balance0;
uint balance1;
{ // scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out);
// optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out);
// optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IUniswapV2ERC20(_token0).balanceOf(address(this));
balance1 = IUniswapV2ERC20(_token1).balanceOf(address(this));
}
uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint _liquidityFee = IZirconFactory(factory).liquidityFee();
uint balance0Adjusted = balance0.mul(10000).sub(amount0In.mul(_liquidityFee));
uint balance1Adjusted = balance1.mul(10000).sub(amount1In.mul(_liquidityFee));
require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(10000**2), 'UniswapV2: K');
}
_update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
// force balances to match reserves
// function skim(address to) external lock {
// address _token0 = token0; // gas savings
// address _token1 = token1; // gas savings
// _safeTransfer(_token0, to, IUniswapV2ERC20(_token0).balanceOf(address(this)).sub(reserve0));
// _safeTransfer(_token1, to, IUniswapV2ERC20(_token1).balanceOf(address(this)).sub(reserve1));
// }
// force reserves to match balances
function sync() external lock {
_update(IUniswapV2ERC20(token0).balanceOf(address(this)), IUniswapV2ERC20(token1).balanceOf(address(this)), reserve0, reserve1);
}
function changeEnergyRevAddress(address _revAddress) external {
require(msg.sender == factory, 'UniswapV2: NOT_ALLOWED');
energyRevenueAddress = _revAddress;
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity =0.5.16;
// a library for performing various math operations
library Math {
function min(uint x, uint y) internal pure returns (uint z) {
z = x < y ? x : y;
}
function max(uint x, uint y) internal pure returns (uint z) {
z = x > y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity =0.5.16;
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.5.16;
interface IZirconPair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function energyRevenueAddress() external pure returns (address);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function burnOneSide(address to, bool isReserve0) external returns (uint amount);
function mintOneSide(address to, bool isReserve0) external returns (uint liquidity, uint amount0, uint amount1);
function publicMintFee() external;
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
// function skim(address to) external;
function sync() external;
function tryLock() external;
function initialize(address, address, address) external;
function changeEnergyRevAddress(address _revAddress) external;
}
pragma solidity >=0.5.0;
interface IUniswapV2Callee {
function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity =0.5.16;
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
pragma solidity =0.5.16;
import './libraries/SafeMath.sol';
import '@uniswap/v2-core/contracts/interfaces/IUniswapV2ERC20.sol';
contract ZirconERC20 is IUniswapV2ERC20 {
using SafeMath for uint;
// TODO: change name of token
string public constant name = 'Zircon';
string public constant symbol = 'ZPT';
uint8 public constant decimals = 18;
uint public totalSupply;
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint) public nonces;
bytes32 public DOMAIN_SEPARATOR;
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
constructor() public {
uint chainId;
assembly {
chainId := chainid()
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
keccak256(bytes(name)),
keccak256(bytes('1')),
chainId,
address(this)
)
);
}
function _mint(address to, uint value) internal {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _burn(address from, uint value) internal {
balanceOf[from] = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);
emit Transfer(from, address(0), value);
}
function _approve(address owner, address spender, uint value) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(address from, address to, uint value) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint value) external returns (bool) {
if (allowance[from][msg.sender] != uint(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
bytes32 digest = keccak256(
abi.encodePacked(
'\x19\x01',
DOMAIN_SEPARATOR,
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
_approve(owner, spender, value);
}
}
pragma solidity >=0.5.16;
interface IZirconFactory {
// function feeTo() external view returns (address);
// function feeToSetter() external view returns (address);
// function migrator() external view returns (address);
function energyFactory() external view returns (address);
function getPair(address, address) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function dynamicRatio() external view returns (uint);
function liquidityFee() external view returns (uint);
function setLiquidityFee(uint _liquidityFee) external;
function pairCodeHash() external pure returns (bytes32);
function createPair(address tokenA, address tokenB, address _pylonFactory) external returns (address pair);
function setMigrator(address _migrator) external;
function setFeeToSetter(address _feeToSetter) external;
function changeEnergyRevAddress(address _pairAddress, address _tokenA, address _tokenB, address _pylonFactory) external returns (address newEnergy);
function changeEnergyFactoryAddress(address _newEnergyFactory) external;
function setDynamicRatio(uint _dynamicRatio) external;
}
pragma solidity >=0.5.0;
interface IUniswapV2ERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
}
pragma solidity =0.5.16;
interface IZirconEnergyRevenue {
function initialize(address _pair, address _tokenA, address _tokenB, address energy0, address energy1, address pylon0, address pylon1) external;
function calculate(uint percentage) external;
function migrateLiquidity(address newEnergy) external;
function getBalanceFromPair() external returns (uint);
function feeValue1() external returns (uint);
function feeValue0() external returns (uint);
function getFees(address _token, uint _amount, address _to) external;
function setFeeValue(uint _feeValue0, uint _feeValue1) external;
}